

Are catch crops sustainable for biogas production?

F. Hayer^{1,2}, D. Scharfy¹, G. Albisser Vögeli¹, V. Anspach¹, G. Gaillard¹

- ¹ Agroscope Reckenholz –Tänikon ART
- ² Bundesamt für Umwelt BAFU

47th LCA Discussion Forum, April 23rd, 2012

Partners

Project title: Life-cycle assessment of catch crop cultivation for biogas production

- Partners & Collaborators
 - Agroscope Reckenholz-Tänikon (ART)
 - D. Scharfy, F. Hayer, G. Gaillard, V. Anspach
 - SFU
 - H. Hänni, A. Cropt
 - Ernst Basler + Partner (EBP)
 - R. Steiner
 - AGFF
 - Daniel Sutter

Why catch crops?

- catch crops do not directly compete with human nutrition
- catch crops are not cultivated in the main cropping season
- catch crops could add to energy production from biomass while maintaining their main ecological function of nitrate capture
- since catch crops also serve as animal feed the usage as energy substrate indirectly competes human nutrition, but catch crops could replace fallows.

Questions and Aims

- Hypothesis:
 - Due to the mentioned advantages catch crops can be used as a sustainable biogas substrate
- Aim:
 - recommendations for catch crop cultivation for biogas production
 - LCIs for the ecoinvent database
- Methodology:
 - LCA of the most common cultivated catch crops in different variants under Swiss conditions

System boundary

Production measures were inventoried according to Swiss production conditions for 1 ha

Field emissions were calculated with SALCA-Models

Fermentation & generation of electricity

- •electricity, at cogen with biogas engine, agricultural, alloc. exergy/CH"
- •electricity, at cogen with biogas engine, agricultural covered, alloc. exergy/CH

The studied catch crops:

Green manure:

mustard (Sinapis alba) phacelia (Phacelia tanacetifolia)

Autumnal catch crops

mustard, phacelia

sunflower

SM101: oat-vetches-mixture

SM 106: grass-clover-mixture

Overwintering catch crops

SM 200, SM 210: grass-clover-mixtures Italian Ryegrass

Variants and analysis

Yield variability for each crop according to sowing date, fertilisation intensity and harvest frequency, but no yield differences were assumed between different fertiliser types

- Fertilisation variants: (0), 20-80 kg N
- Fertiliser type: mineral fertiliser, cattle slurry
- Harvest: 1-3 times (grass-clover-mixtures)

Including rotational and catch crop effects by system expansion

```
S(W)CC = S(W)CC+SM - GM+SM

I = Impact
CC = Catch Crop
GM = Green manure
S(W)CC+SM = Silage maize with CC
GM+SM = Silage maize with green manure
```

Impact assessment

Impact categories:

Non-renewable energy (NRE) ecoinvent 2007

Global warming potential (GWP)IPCC 2007

Eutrophication, acidificationEDIP 2003

Human toxicity, ecotoxicity
 CML2001, extended

Agroscope

Non renewable energy demand

Agroscope

GWP: Sensitivity to yield

Agroscope

GWP: covered vs. uncovered production

GWP: Comparison with different electricity mixes

electricity mix /CH 100% of electricity generated with nuclear power replaced by production mix UCTE

Are catch crops sustainable for biogas production?

Acidification & Eutrophication

Acidification

Eutrophication

Human toxicity and ecotoxicity

human toxicity and aquatic ecotoxicity

terrestrial toxicity

- The current electricity mix in Switzerland is mainly based on hydro- and nuclear energy resulting in low impacts per kWh
- Due to this fact
 - electricity produced with biomass from all analyzed catch crop variants shows a higher GWP
 - also acidification-, eutrophication-, human toxicity and in most cases terrestrial toxicity impacts per kWh are higher
 - but some advantages regarding NRE and aquatic ecotoxicity exist

- The conclusions are affected by
 - the current electricity mix
 - Even if 50% of the nuclear power will be replaced by imports of electricity from the UCTE grid the Swiss mix would be advantageous compared to electricity from catch crop biomass
 - However in comparison to the UCTE mix electricity from catch crop biomass would be advantageous in nearly all impact categories
 - the high emissions from biogas production
 - without a credit (e.g. for its green manure function) it is not possible to produce electricity from biogas based on catch crops with a lower GWP compared with the current mix

- Green manure credit for catch crops
 - According to the ÖLN the cultivation of green manure or a catch crop is mandatory before maize
 - credit with a significant effect
 - The lower the intensity and yield the higher the credit per kg yield and per kWh. In consequence
 - extensive or late sown variants with a low impact per kWh when the credit is included
 - but with very high impacts if the credit is not included

- If catch crops should replace UCTE electricity mix imports an important question to consider is the target, which might be;
 - a GWP per kWh as low as possible
 - a reduction potential per ha as high as possible
- depending on the target different variants are preferable
 - the first target could be fulfilled with extensive variants
 - + low additional environmental impacts compared to green manure
 - low yield and reduction potential
 - intensive variants preferable for the second goal
 - + high yield and also a high reduction potential
 - higher impacts per ha and also per kWh

Thank you!

Questions: frank.hayer@art.admin.ch